AIAA 2003-3957 Optimization of High-Lift Configurations Using a Newton–Krylov Algorithm
نویسندگان
چکیده
A gradient-based Newton–Krylov algorithm for aerodynamic shape optimization is applied to lift maximization of a multi-element landing configuration. The governing flow equations are the two-dimensional compressible Navier–Stokes equations in conjunction with a one-equation transport turbulence model. The objective function gradient is computed via the discrete-adjoint method. The design examples reveal a number of difficulties for numerical optimization methods when applied to high-lift design problems, which include flow solver convergence problems at stall and post-stall conditions and poor off-design performance. Strategies are presented for addressing these difficulties, and an example is provided to demonstrate the approach.
منابع مشابه
Optimal Shape Design Of Aerodynamic Configurations: A Newton-Krylov Approach by
OPTIMAL SHAPE DESIGN OF AERODYNAMIC CONFIGURATIONS: A NEWTON-KRYLOV APPROACH Marian Nemec Doctor of Philosophy Graduate Department of Aerospace Science and Engineering University of Toronto 2003 Optimal shape design of aerodynamic configurations is a challenging problem due to the nonlinear effects of complex flow features such as shock waves, boundary layers, ...
متن کاملFrom Analysis to Design of High-lift Configurations Using a Newton–krylov Algorithm
An efficient multi-block Newton–Krylov algorithm using the compressible Navier–Stokes equations is presented for the analysis and design of high-lift airfoil configurations. The preconditioned generalized minimum residual (GMRES) method is applied to solve the discreteadjoint equation, leading to a fast computation of accurate objective function gradients. Furthermore, the GMRES method is used ...
متن کاملIcas 2002 Congress from Analysis to Design of High-lift Configurations Using a Newton–krylov Algorithm
An efficient multi-block Newton–Krylov algorithm using the compressible Navier–Stokes equations is presented for the analysis and design of high-lift airfoil configurations. The preconditioned generalized minimum residual (GMRES) method is applied to solve the discreteadjoint equation, leading to a fast computation of accurate objective function gradients. Furthermore, the GMRES method is used ...
متن کاملMultipoint and Multi-Objective Aerodynamic Shape Optimization
A gradient-based Newton–Krylov algorithm is presented for the aerodynamic shape optimization of singleand multi-element airfoil configurations. The flow is governed by the compressible Navier–Stokes equations in conjunction with a one-equation transport turbulence model. The preconditioned generalized minimal residual method is applied to solve the discrete-adjoint equation, which leads to a fa...
متن کاملAn investigation of induced drag minimization using a Newton-Krylov algorithm
We present an optimization algorithm for the study of induced drag minimization, with applications to unconventional aircraft design. The algorithm is based on a discrete-adjoint formulation and uses an efficient parallel-Newton-Krylov solution strategy. We validate the optimizer by recovering an elliptical lift distribution using twist optimization; we believe this an important, and under-appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003